What makes a RAG regeneration associated?
نویسندگان
چکیده
Regenerative failure remains a significant barrier for functional recovery after central nervous system (CNS) injury. As such, understanding the physiological processes that regulate axon regeneration is a central focus of regenerative medicine. Studying the gene transcription responses to axon injury of regeneration competent neurons, such as those of the peripheral nervous system (PNS), has provided insight into the genes associated with regeneration. Though several individual "regeneration-associated genes" (RAGs) have been identified from these studies, the response to injury likely regulates the expression of functionally coordinated and complementary gene groups. For instance, successful regeneration would require the induction of genes that drive the intrinsic growth capacity of neurons, while simultaneously downregulating the genes that convey environmental inhibitory cues. Thus, this view emphasizes the transcriptional regulation of gene "programs" that contribute to the overall goal of axonal regeneration. Here, we review the known RAGs, focusing on how their transcriptional regulation can reveal the underlying gene programs that drive a regenerative phenotype. Finally, we will discuss paradigms under which we can determine whether these genes are injury-associated, or indeed necessary for regeneration.
منابع مشابه
Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury
Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce 'effector' RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis o...
متن کاملCombinatorial overexpression of regeneration-associated transcription factors in medium- throughput cellular screens for neurite outgrowth
Peripheral nerve injury induces the expression of many regeneration-associated genes (RAGs), including transcription factors (TFs) such as ATF3, c-Jun and Sox11. RAG expression is essential for successful axonal regeneration and a number of microarray studies have provided insight in the RAG response. TFs can potentially regulate the expression of many genes simultaneously, and some of the regu...
متن کاملA Gene Network Perspective on Axonal Regeneration
The regenerative capacity of injured neurons in the central nervous system is limited due to the absence of a robust neuron-intrinsic injury-induced gene response that supports axon regeneration. In peripheral neurons axotomy induces a large cohort of regeneration-associated genes (RAGs). The forced expression of some of these RAGs in injured neurons has some beneficial effect on axon regenerat...
متن کاملATF3 promotes regeneration of the central axon branch of sensory neurons but the addition of Smad1, c-Jun and STAT3 does not exert synergistic effects
ATF3 promotes regeneration of the central axon branch of sensory neurons but the addition of Smad1, c-Jun and STAT3 does not exert synergistic effects Abstract Successful axon regeneration after nerve injury is accompanied by the upregulation of hundreds of regeneration-associated genes (RAGs), including a number of transcription factors (TFs) which may be key regulators of the RAG program. We ...
متن کاملOverexpression of ATF3 or the combination of ATF3, c-Jun, STAT3 and Smad1 promotes regeneration of the central axon branch of sensory neurons but without synergistic effects.
Peripheral nerve injury results in the activation of a number of transcription factors (TFs) in injured neurons, some of which may be key regulators of the regeneration-associated gene (RAG) programme. Among known RAG TFs, ATF3, Smad1, STAT3 and c-Jun have all been linked to successful axonal regeneration and have known functional and physical interactions. We hypothesised that TF expression wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015